Approximate Limits of Excavation
Foundation Soil

Retained Zone
Approximate Limits of Excavation

8" Min. Low Permeable Soil

Reinforced Soil

1' drain fill as measured from the tail of units

Cap Unit

StoneWall II Unit

0"-1/8"
6"

Crushed Stone Leveling Pad

A back drain is suggested in a cut situation or where groundwater is present. For fill walls, the source of ground water may not exit.

A back drain could be a geocomposite, 2/3 the slope height, 1/3 coverage on the slope.

Typical Reinforced Wall Section
Near Vertical Setback

The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.

WestBlock Systems, Inc.
T: 253-573-1049

www.WestBlockSystems.com
Approximate Limits of Excavation

Foundation Soil

Retained Zone

Approximate Limits of Excavation

Reinforced Soil

8" Min. Low Permeable Soil

1' drain fill as measured from the tail of units

Cap Unit

StoneWall II Unit

1/2" Setback

Crushed Stone Leveling Pad

Design Ht (DH)

Typical Reinforced Wall Section

1/2" Setback

A back drain is suggested in a cut situation or where groundwater is present. For fill walls, the source of ground water may not exit. A back drain could be a geocomposite, 2/3 the slope height, 1/3 coverage on the slope.

The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.
The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.
Approximate Limits of Excavation

Retained Zone

A back drain is suggested in a cut situation or where groundwater is present. For fill walls, the source of ground water may not exit.

A back drain could be a geocomposite, 2/3 the slope height, 1/3 coverage on the slope.

1" Min. Low Permeable Soil

1' drain fill as measured from the tail of units

Cap Unit

8" Min. Low Permeable Soil

6"

0"-1/8"

2'

1' drain fill

Cap Unit

StoneWall II Unit

0"-1/8"

6"

Crushed Stone Leveling Pad

1" drain fill as measured from the tail of units

Cap Unit

StoneWall II Unit

1' drain fill

Cap Unit

8" Min. Low Permeable Soil

6"

0"-1/8"

The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.
Radius varies with unit selection (55 in min.)

Radius can be 90 degs or less

Show 1ft of drain stone, geogrid layers extending back from units.
Show 1ft of drain stone, geogrid layers extending back from units.

Show 90 deg. other wall.

The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.

WestBlock Systems, Inc.
T: 253-573-1049
www.WestBlockSystems.com

StoneWall II Standard Dwgs

Title: Installation on Corners

Drawn By: smr
Sheet

As Noted

Scale: As Noted
BACK SLOPE WITH COMPOSITE DRAIN

Drainage fill as measured back slope with composite drain. 4" perforated drainpipe with sock. Outlet at each end of wall, through face of wall, or connect to store sewer system. 3/4" minus free draining crushed stone. 8 oz needle punched, non-woven geotextile wrap. Fold and secure geotextile to cover composite end. 5" min overlap. GeoComposite back slope drain, 1/3 area coverage. 5" min overlap. 2/3 H min. 4" perforated drainpipe with sock. Outlet at each end of wall, through face of wall, or connect to store sewer system. 24" min.

The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.
Leveling Pad Detail

1/4" = 1'

Unit + 12" (24")

6"

The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.
NOTE:

FOR PIPES LARGER THAN 24", A CONCRETE COLLAR MAY BE CAST AROUND PIPE FOR EASE OF CONSTRUCTION AND APPEARANCE.

SAW CUT UNITS TO FIT WITHIN 1/2" OF PIPE

CONCRETE COLLAR (IF APPLICABLE)

Typical Pipe Outlet Detail

SCALE: N.T.S.
NOTES:
1. AUGER THROUGH GEOGRID LAYERS.
2. BACKFILL OR CONCRETE GUARDRAIL/ FENCE POST IN PLACE.
1. General - The Sleeve-It™ system shall be installed by the retaining wall contractor to facilitate future fence post installation. Contractor shall verify proper spacing requirements prior to installation.

2. Assembly & Installation - Refer to instructions provided with units for specific information related to the assembly of the Sleeve-It™ system and the correct installation procedure. When the segmental retaining wall has been constructed to two feet from top not including the capstone:

Step 1: Prepare a level area approximately 24" wide x 36" deep behind the wall face. The prepared area should be 24" below the proposed top of wall (not including the cap stone).

Step 2: Take the two sleeve halves, one front (no slots) and one back (with slots) and lay them on a level surface with the IN (smooth fingers) and the OUT (raised fingers) opposite each other. Intersperse the two sleeve halves by pushing the IN finger sets under the OUT finger sets. Flip the sleeve over and follow the same procedure on the other side. Stand the unit vertically and use the two plastic ties to secure the sleeve halves into a cylindrical unit.

Step 3: Place the Plastisol coated cantilever base on the prepared area with the vertical upright about 6" from the tail of the block.

Step 4: Slide the sleeve over the vertical leg (the uncoated portion) with the slotted side of the sleeve facing away from the wall face.

Step 5: Slip the uncoated end of each strut through the slots located in the back of the sleeve and connect them to the topmost transverse bar on the vertical leg inside the sleeve. Connect the coated ends of the struts to the coated base portion of the steel cantilever on the second transverse bar from the rear of the base.

Step 6: Reposition the entire system as needed by lifting it using the top transverse bar of the vertical leg and wall face. Fill cavity completely with concrete. When concrete cures, topsoil or other surficial cover may be placed over the Sleeve-It™ system to create final, finished appearance.

The Sleeve-It™ product shall be evenly spaced no farther apart than 10 feet on centers in any case. Use of the Sleeve-It™ system is limited to the following fencing applications:

- 6-foot height and under ballustraded PVC, steel, aluminum or wrought iron fences.
- 6-foot high and under wood fence with gaps between boards
- 8-foot high and under battenstrued PVC, steel, aluminum or wrought iron fences.

For other fencing systems specifically not meeting these criteria, contact Strata Systems Inc., to determine suitability. 1 (800) 880-7750 or email strata@geogrid.com

ALL material may be subject to site testing for compliance to the above specifications.

Details from SleeveIt

WestBlock Systems, Inc.
T: 253-573-1049

www.WestBlockSystems.com
The information on this drawing is for conceptual design and should not be used without the signature of a professional engineer. Details should be specific to the project and project site requirements.